Executive Development Programme in Recommendation Systems Architecture

-- ViewingNow

The Executive Development Programme in Recommendation Systems Architecture is a certificate course designed to empower professionals with the latest techniques in recommendation systems. This programme is crucial in today's data-driven world, where personalized user experiences are key to business success.

5.0
Based on 3,470 reviews

6,239+

Students enrolled

GBP £ 140

GBP £ 202

Save 44% with our special offer

Start Now

ใ“ใฎใ‚ณใƒผใ‚นใซใคใ„ใฆ

It addresses the industry's growing demand for experts who can design and implement effective recommendation systems. Learners will gain essential skills in architecting and managing recommendation systems, using state-of-the-art techniques and tools. They will learn how to leverage machine learning algorithms, data analysis, and user behavior to deliver personalized recommendations. This course will also equip learners with the ability to make data-driven decisions, a skill highly sought after in various industries. By the end of this programme, learners will be able to design and implement recommendation systems that drive user engagement and business growth. This will significantly enhance their career advancement opportunities, making them valuable assets in today's digital economy.

100%ใ‚ชใƒณใƒฉใ‚คใƒณ

ใฉใ“ใ‹ใ‚‰ใงใ‚‚ๅญฆ็ฟ’

ๅ…ฑๆœ‰ๅฏ่ƒฝใช่จผๆ˜Žๆ›ธ

LinkedInใƒ—ใƒญใƒ•ใ‚ฃใƒผใƒซใซ่ฟฝๅŠ 

ๅฎŒไบ†ใพใง2ใƒถๆœˆ

้€ฑ2-3ๆ™‚้–“

ใ„ใคใงใ‚‚้–‹ๅง‹

ๅพ…ๆฉŸๆœŸ้–“ใชใ—

ใ‚ณใƒผใ‚น่ฉณ็ดฐ

โ€ข Recommendation Systems Architecture Overview: Understanding the fundamental concepts, components, and algorithms used in recommendation systems.
โ€ข User Profiling and Behavior Analysis: Techniques for building user profiles and analyzing user behavior to make personalized recommendations.
โ€ข Collaborative Filtering: Methods for generating recommendations based on user behavior and preferences, with a focus on matrix factorization and neighborhood-based approaches.
โ€ข Content-Based Filtering: Strategies for generating recommendations based on the properties and features of the items being recommended.
โ€ข Hybrid Recommendation Systems: Exploration of approaches that combine collaborative filtering, content-based filtering, and other techniques to improve recommendation accuracy and user experience.
โ€ข Evaluation Metrics and Methods: Quantitative and qualitative methods for evaluating the performance of recommendation systems, including precision, recall, and user satisfaction.
โ€ข Ethical and Legal Considerations: Examination of the ethical and legal issues surrounding recommendation systems, including privacy, bias, and transparency.
โ€ข Emerging Trends and Future Directions: Analysis of the latest developments and research in recommendation systems, including deep learning, reinforcement learning, and explainable AI.

ใ‚ญใƒฃใƒชใ‚ขใƒ‘ใ‚น

ๅ…ฅๅญฆ่ฆไปถ

  • ไธป้กŒใฎๅŸบๆœฌ็š„ใช็†่งฃ
  • ่‹ฑ่ชžใฎ็ฟ’็†Ÿๅบฆ
  • ใ‚ณใƒณใƒ”ใƒฅใƒผใ‚ฟใƒผใจใ‚คใƒณใ‚ฟใƒผใƒใƒƒใƒˆใ‚ขใ‚ฏใ‚ปใ‚น
  • ๅŸบๆœฌ็š„ใชใ‚ณใƒณใƒ”ใƒฅใƒผใ‚ฟใƒผใ‚นใ‚ญใƒซ
  • ใ‚ณใƒผใ‚นๅฎŒไบ†ใธใฎ็Œฎ่บซ

ไบ‹ๅ‰ใฎๆญฃๅผใช่ณ‡ๆ ผใฏไธ่ฆใ€‚ใ‚ขใ‚ฏใ‚ปใ‚ทใƒ“ใƒชใƒ†ใ‚ฃใฎใŸใ‚ใซ่จญ่จˆใ•ใ‚ŒใŸใ‚ณใƒผใ‚นใ€‚

ใ‚ณใƒผใ‚น็Šถๆณ

ใ“ใฎใ‚ณใƒผใ‚นใฏใ€ใ‚ญใƒฃใƒชใ‚ข้–‹็™บใฎใŸใ‚ใฎๅฎŸ็”จ็š„ใช็Ÿฅ่ญ˜ใจใ‚นใ‚ญใƒซใ‚’ๆไพ›ใ—ใพใ™ใ€‚ใใ‚Œใฏ๏ผš

  • ่ชๅฏใ•ใ‚ŒใŸๆฉŸ้–ขใซใ‚ˆใฃใฆ่ชๅฎšใ•ใ‚Œใฆใ„ใชใ„
  • ่ชๅฏใ•ใ‚ŒใŸๆฉŸ้–ขใซใ‚ˆใฃใฆ่ฆๅˆถใ•ใ‚Œใฆใ„ใชใ„
  • ๆญฃๅผใช่ณ‡ๆ ผใฎ่ฃœๅฎŒ

ใ‚ณใƒผใ‚นใ‚’ๆญฃๅธธใซๅฎŒไบ†ใ™ใ‚‹ใจใ€ไฟฎไบ†่จผๆ˜Žๆ›ธใ‚’ๅ—ใ‘ๅ–ใ‚Šใพใ™ใ€‚

ใชใœไบบใ€…ใŒใ‚ญใƒฃใƒชใ‚ขใฎใŸใ‚ใซ็งใŸใกใ‚’้ธใถใฎใ‹

ใƒฌใƒ“ใƒฅใƒผใ‚’่ชญใฟ่พผใฟไธญ...

ใ‚ˆใใ‚ใ‚‹่ณชๅ•

ใ“ใฎใ‚ณใƒผใ‚นใ‚’ไป–ใฎใ‚ณใƒผใ‚นใจๅŒบๅˆฅใ™ใ‚‹ใ‚‚ใฎใฏไฝ•ใงใ™ใ‹๏ผŸ

ใ‚ณใƒผใ‚นใ‚’ๅฎŒไบ†ใ™ใ‚‹ใฎใซใฉใ‚Œใใ‚‰ใ„ๆ™‚้–“ใŒใ‹ใ‹ใ‚Šใพใ™ใ‹๏ผŸ

WhatSupportWillIReceive

IsCertificateRecognized

WhatCareerOpportunities

ใ„ใคใ‚ณใƒผใ‚นใ‚’้–‹ๅง‹ใงใใพใ™ใ‹๏ผŸ

ใ‚ณใƒผใ‚นใฎๅฝขๅผใจๅญฆ็ฟ’ใ‚ขใƒ—ใƒญใƒผใƒใฏไฝ•ใงใ™ใ‹๏ผŸ

ใ‚ณใƒผใ‚นๆ–™้‡‘

ๆœ€ใ‚‚ไบบๆฐ—
ใƒ•ใ‚กใ‚นใƒˆใƒˆใƒฉใƒƒใ‚ฏ๏ผš GBP £140
1ใƒถๆœˆใงๅฎŒไบ†
ๅŠ ้€Ÿๅญฆ็ฟ’ใƒ‘ใ‚น
  • ้€ฑ3-4ๆ™‚้–“
  • ๆ—ฉๆœŸ่จผๆ˜Žๆ›ธ้…้”
  • ใ‚ชใƒผใƒ—ใƒณ็™ป้Œฒ - ใ„ใคใงใ‚‚้–‹ๅง‹
Start Now
ใ‚นใ‚ฟใƒณใƒ€ใƒผใƒ‰ใƒขใƒผใƒ‰๏ผš GBP £90
2ใƒถๆœˆใงๅฎŒไบ†
ๆŸ”่ปŸใชๅญฆ็ฟ’ใƒšใƒผใ‚น
  • ้€ฑ2-3ๆ™‚้–“
  • ้€šๅธธใฎ่จผๆ˜Žๆ›ธ้…้”
  • ใ‚ชใƒผใƒ—ใƒณ็™ป้Œฒ - ใ„ใคใงใ‚‚้–‹ๅง‹
Start Now
ไธกๆ–นใฎใƒ—ใƒฉใƒณใซๅซใพใ‚Œใ‚‹ใ‚‚ใฎ๏ผš
  • ใƒ•ใƒซใ‚ณใƒผใ‚นใ‚ขใ‚ฏใ‚ปใ‚น
  • ใƒ‡ใ‚ธใ‚ฟใƒซ่จผๆ˜Žๆ›ธ
  • ใ‚ณใƒผใ‚นๆ•™ๆ
ใ‚ชใƒผใƒซใ‚คใƒณใ‚ฏใƒซใƒผใ‚ทใƒ–ไพกๆ ผ โ€ข ้š ใ‚ŒใŸๆ–™้‡‘ใ‚„่ฟฝๅŠ ่ฒป็”จใชใ—

ใ‚ณใƒผใ‚นๆƒ…ๅ ฑใ‚’ๅ–ๅพ—

่ฉณ็ดฐใชใ‚ณใƒผใ‚นๆƒ…ๅ ฑใ‚’ใŠ้€ใ‚Šใ—ใพใ™

ไผš็คพใจใ—ใฆๆ”ฏๆ‰•ใ†

ใ“ใฎใ‚ณใƒผใ‚นใฎๆ”ฏๆ‰•ใ„ใฎใŸใ‚ใซไผš็คพ็”จใฎ่ซ‹ๆฑ‚ๆ›ธใ‚’ใƒชใ‚ฏใ‚จใ‚นใƒˆใ—ใฆใใ ใ•ใ„ใ€‚

่ซ‹ๆฑ‚ๆ›ธใงๆ”ฏๆ‰•ใ†

ใ‚ญใƒฃใƒชใ‚ข่จผๆ˜Žๆ›ธใ‚’ๅ–ๅพ—

ใ‚ตใƒณใƒ—ใƒซ่จผๆ˜Žๆ›ธใฎ่ƒŒๆ™ฏ
EXECUTIVE DEVELOPMENT PROGRAMME IN RECOMMENDATION SYSTEMS ARCHITECTURE
ใซๆŽˆไธŽใ•ใ‚Œใพใ™
ๅญฆ็ฟ’่€…ๅ
ใงใƒ—ใƒญใ‚ฐใƒฉใƒ ใ‚’ๅฎŒไบ†ใ—ใŸไบบ
London School of International Business (LSIB)
ๆŽˆไธŽๆ—ฅ
05 May 2025
ใƒ–ใƒญใƒƒใ‚ฏใƒใ‚งใƒผใƒณID๏ผš s-1-a-2-m-3-p-4-l-5-e
ใ“ใฎ่ณ‡ๆ ผใ‚’LinkedInใƒ—ใƒญใƒ•ใ‚ฃใƒผใƒซใ€ๅฑฅๆญดๆ›ธใ€ใพใŸใฏCVใซ่ฟฝๅŠ ใ—ใฆใใ ใ•ใ„ใ€‚ใ‚ฝใƒผใ‚ทใƒฃใƒซใƒกใƒ‡ใ‚ฃใ‚ขใ‚„ใƒ‘ใƒ•ใ‚ฉใƒผใƒžใƒณใ‚นใƒฌใƒ“ใƒฅใƒผใงๅ…ฑๆœ‰ใ—ใฆใใ ใ•ใ„ใ€‚
SSB Logo

4.8
ๆ–ฐ่ฆ็™ป้Œฒ