Executive Development Programme in AI for Epidemiological Impact Assessment
-- ViewingNowThe Executive Development Programme in AI for Epidemiological Impact Assessment is a certificate course designed to equip learners with essential skills for career advancement in the rapidly evolving field of artificial intelligence (AI) applications in public health. This course is of paramount importance given the increasing demand for AI solutions to address complex public health challenges, such as disease outbreaks, antimicrobial resistance, and climate change impacts.
3,447+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ě´ ęłźě ě ëí´
100% ě¨ëźě¸
ě´ëěë íěľ
ęłľě ę°ëĽí ě¸ěŚě
LinkedIn íëĄíě ěśę°
ěëŁęšě§ 2ę°ě
죟 2-3ěę°
ě¸ě ë ěě
ë기 ę¸°ę° ěě
ęłźě ě¸ëśěŹí
⢠Introduction to Artificial Intelligence (AI): Understanding the basics of AI, including its definition, history, and applications. This unit will provide a foundation for the rest of the course.
⢠Data Analysis and Visualization: Learning to analyze and visualize data using various tools and techniques. This is crucial for epidemiological impact assessment.
⢠Machine Learning (ML) for Epidemiology: Understanding how ML algorithms can be applied to epidemiological data to uncover insights and trends. This unit will cover both supervised and unsupervised learning.
⢠Deep Learning for Epidemiological Impact Assessment: Exploring the use of deep learning techniques, such as neural networks, for assessing the impact of various factors on epidemiological outcomes.
⢠Natural Language Processing (NLP) for Epidemiology: Learning how to extract meaning from unstructured text data, such as clinical notes, using NLP techniques. This can be particularly useful in epidemiology.
⢠Ethical Considerations in AI for Epidemiology: Examining the ethical implications of using AI in epidemiology, including issues related to privacy, bias, and transparency. This unit will also cover ethical guidelines for AI in healthcare.
⢠Implementing AI in Epidemiological Practice: Learning how to implement AI solutions in real-world epidemiological settings, including data management, model validation, and deployment. This unit will also cover best practices for AI project management.
Note: The above list is not exhaustive and the actual units may vary based on the specific needs and goals of the Executive Development Programme.
ę˛˝ë Ľ 경ëĄ
ě í ěęą´
- 죟ě ě ëí 기본 ě´í´
- ěě´ ě¸ě´ ëĽěë
- ěť´í¨í° ë° ě¸í°ëˇ ě ꡟ
- 기본 ěť´í¨í° 기ě
- ęłźě ěëŁě ëí íě
ěŹě ęłľě ěę˛Šě´ íěíě§ ěěľëë¤. ě ꡟěąě ěí´ ě¤ęłë ęłźě .
ęłźě ěí
ě´ ęłźě ě ę˛˝ë Ľ ę°ë°ě ěí ě¤ěŠě ě¸ ě§ěęłź 기ě ě ě ęłľíŠëë¤. ꡸ę˛ě:
- ě¸ě ë°ě 기ę´ě ěí´ ě¸ěŚëě§ ěě
- ęśíě´ ěë 기ę´ě ěí´ ęˇě ëě§ ěě
- ęłľě ě겊ě ëł´ěě
ęłźě ě ěąęłľě ěźëĄ ěëŁí늴 ěëŁ ě¸ěŚě뼟 ë°ę˛ ëŠëë¤.
ě ěŹëë¤ě´ ę˛˝ë Ľě ěí´ ě°ëŚŹëĽź ě ííëę°
댏롰 ëĄëŠ ě¤...
ě죟 돝ë ě§ëʏ
ě˝ě¤ ěę°ëŁ
- 죟 3-4ěę°
- 쥰기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- 죟 2-3ěę°
- ě 기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- ě 체 ě˝ě¤ ě ꡟ
- ëě§í¸ ě¸ěŚě
- ě˝ě¤ ěëŁ
ęłźě ě ëł´ ë°ę¸°
íěŹëĄ ě§ëś
ě´ ęłźě ě ëšěŠě ě§ëśí기 ěí´ íěŹëĽź ěí ě˛ęľŹě뼟 ěě˛íě¸ě.
ě˛ęľŹěëĄ ę˛°ě ę˛˝ë Ľ ě¸ěŚě íë