Professional Certificate in Predictive Model Building Expertise
-- ViewingNowThe Professional Certificate in Predictive Model Building Expertise is a comprehensive course that equips learners with essential skills in predictive modeling. This certificate program emphasizes the importance of data-driven decision making, which is crucial in today's data-centric world.
7 553+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ร propos de ce cours
100% en ligne
Apprenez de n'importe oรน
Certificat partageable
Ajoutez ร votre profil LinkedIn
2 mois pour terminer
ร 2-3 heures par semaine
Commencez ร tout moment
Aucune pรฉriode d'attente
Dรฉtails du cours
โข Introduction to Predictive Modeling: Overview of predictive model building, its applications, and benefits. Understanding the differences between regression, classification, and time series analysis.
โข Data Preparation: Data cleaning, preprocessing, and exploratory data analysis. Handling missing data, outliers, and categorical variables. Feature scaling, transformation, and engineering.
โข Statistical Foundations: Probability distributions, statistical inference, hypothesis testing, and confidence intervals. Understanding the assumptions of predictive models and their implications.
โข Model Evaluation Metrics: Evaluating the performance of predictive models using accuracy, precision, recall, F1-score, R-squared, mean absolute error, mean squared error, and other metrics.
โข Regression Analysis: Simple and multiple linear regression, polynomial regression, and logistic regression. Understanding the assumptions, advantages, and limitations of these models.
โข Classification Techniques: Decision trees, random forests, support vector machines, and k-nearest neighbors. Ensemble methods, such as bagging, boosting, and stacking.
โข Time Series Analysis: Autoregressive (AR), moving average (MA), and autoregressive moving average (ARIMA) models. Seasonality, trends, and stationarity. Forecasting techniques and performance evaluation.
โข Model Selection and Tuning: Model validation techniques, such as k-fold cross-validation and bootstrapping. Grid search, random search, and Bayesian optimization for hyperparameter tuning. Overfitting, underfitting, and model complexity.
โข Deploying Predictive Models: Integrating predictive models into production environments. Containerization, version control, and monitoring performance. Ethical considerations and model transparency.
Parcours professionnel
Exigences d'admission
- Comprรฉhension de base de la matiรจre
- Maรฎtrise de la langue anglaise
- Accรจs ร l'ordinateur et ร Internet
- Compรฉtences informatiques de base
- Dรฉvouement pour terminer le cours
Aucune qualification formelle prรฉalable requise. Cours conรงu pour l'accessibilitรฉ.
Statut du cours
Ce cours fournit des connaissances et des compรฉtences pratiques pour le dรฉveloppement professionnel. Il est :
- Non accrรฉditรฉ par un organisme reconnu
- Non rรฉglementรฉ par une institution autorisรฉe
- Complรฉmentaire aux qualifications formelles
Vous recevrez un certificat de rรฉussite en terminant avec succรจs le cours.
Pourquoi les gens nous choisissent pour leur carriรจre
Chargement des avis...
Questions frรฉquemment posรฉes
Frais de cours
- 3-4 heures par semaine
- Livraison anticipรฉe du certificat
- Inscription ouverte - commencez quand vous voulez
- 2-3 heures par semaine
- Livraison rรฉguliรจre du certificat
- Inscription ouverte - commencez quand vous voulez
- Accรจs complet au cours
- Certificat numรฉrique
- Supports de cours
Obtenir des informations sur le cours
Payer en tant qu'entreprise
Demandez une facture pour que votre entreprise paie ce cours.
Payer par FactureObtenir un certificat de carriรจre